About the Almost Everywhere Convergence of the Spectral Expansions of Functions

نویسنده

  • ANVARJON AKHMEDOV
چکیده

Abstract. In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the LaplaceBeltrami operator on the unit sphere. The sufficient conditions for summability is obtained. The more general properties and representation by the eigenfunctions of the Laplace-Beltrami operator of the Liouville space L 1 is used. For the orders of Riesz means, which greater than critical index N−1 2 we proved the positive results on summability of Fourier-Laplace series. Note that when order α of Riesz means is less than critical index then for establish of the almost everywhere convergence requests to use other methods form proving negative results. We have constructed different method of summability of Laplace series, which based on spectral expansions property of self-adjoint LaplaceBeltrami operator on the unit sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About summability of Fourier-Laplace series

Abstract In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the Laplace operator. The sufficient conditions for summability is obtained. For the orders of Riesz means, which greater than critical index N−1 2 we established the estimation for maximal operator of the Riesz means. Note that when order α of Riesz means is less than cr...

متن کامل

Almost Everywhere Convergence of Orthogonal Expansions of Several Variables

For weighted L space on the unit sphere of R, in which the weight functions are invariant under finite reflection groups, a maximal function is introduced and used to prove the almost everywhere convergence of orthogonal expansions in h-harmonics. The result applies to various methods of summability, including the de la Vallée Poussin means and the Cesàro means. Similar results are also establi...

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008